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density (BMD),8 a low‑energy fracture9,10 or absolute 10-year fracture 
probability.11,12

Basic sex steroid physiology in relation to bone health

Metabolism and regulation of circulating sex steroids
Sex steroid serum concentrations are determined by their synthesis 
in the gonads and adrenals as well as by catabolic enzyme activity. 
Testosterone  (T), the principal circulating androgen, can be 
aromatized to estradiol (E2, the principal estrogen) or 5a‑reduced 
to dihydrotestosterone  (DHT), a non‑aromatizable androgen. 
Thus, in bone T may stimulate the androgen receptor  (AR), 
either directly or as DHT, as well as estrogen receptors  (ER) 
following aromatization.13 The synthesis of sex steroids is under 
hypothalamic‑pituitary feedback control via gonadotropins (follicle 
stimulating hormone  (FSH) and luteinizing hormone  (LH)). 
Several high‑profile reports have suggested that FSH contributes to 
hypogonadal bone loss in female rodents,14,15 but other groups have 
failed to confirm the presence of FSH receptors in bone cells or a 
physiological effect thereof.16–19 Gonadotropin inhibition also does 
not seem to influence bone turnover markers independent of sex 
steroid levels in men.20

Serum bioactivity of sex steroids is restricted in humans by their 
high affinity binding to sex hormone-binding globulin (SHBG). About 
45% of T, the principal circulating androgen, is bound to SHBG in 
normal men; only the non‑SHBG‑bound fraction is considered 

INTRODUCTION
Bone is an endocrine tissue sensitive to androgens and estrogens.1 
The epidemiology and clinical approach to male osteoporosis have 
recently been reviewed elsewhere.2 Here, we will review the literature 
on the role of sex steroids in male bone health and more specifically 
in osteoporosis, the most common metabolic bone disease. We will 
focus on human data with support from recent evidence from knockout 
mouse models. The latter are covered in more detail elsewhere in this 
issue (See Rana et al. in this theme issue).

Men contribute considerably to the disease burden of osteoporosis
Although still perceived by the public, patients and most physicians 
as a typically female condition, men account for a substantial 
proportion of the burden of osteoporosis. At age 50, the remaining 
lifetime risk of osteoporotic fractures is 20%–25% in Caucasian 
men versus 45%–55% in women.2 About one‑third of the 9 million 
osteoporotic fractures worldwide occurs in men.3 For hip fractures, 
a review of worldwide epidemiological data recently showed that 
while incidence varied more than 10‑fold between countries, men 
almost invariably have twofold lower risk (except perhaps in regions 
where incidence is very low).4  Male osteoporosis is responsible 
for about 25% of the economic burden of osteoporosis in the 
United States  (US$17  billion total costs) and Canada  (2.3  billion 
Canadian dollars).5–7 Nevertheless, osteoporosis remains even 
more underdiagnosed and undertreated in men compared to 
women, regardless of whether it is evidenced by low bone mineral 
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bioactive. Most of this fraction is bound nonspecifically to albumin 
and other carrier proteins, while only about 2% of T and E2 and <1% of 
DHT circulates freely in normal men.21 According to the free hormone 
hypothesis however, this constitutes the most physiologically important 
fraction.22 Others have pointed to the limitations of this theory and 
have pleaded to “stop looking backwards” and focusing exclusively 
on free sex steroid levels. Indeed, even if only a small portion of the 
protein‑bound sex steroids is physiologically active, it is likely to have 
more influence than the 1%–2% that is free.23

Sex steroid nuclear receptor signaling
Sex steroids classically act via their nuclear receptors (NRs: AR, ERa 
and ERb), which bind directly or indirectly via other proteins to cognate 
DNA response elements (androgen response elements and estrogen 
response elements), recruit coactivators and other regulatory proteins, 
and influence gene transcription.24 Two types of androgen response 
elements exist (classical and selective), but mice with abrogated AR 
binding to selective androgen response elements only show a sex organ 
phenotype.25 Nonclassical signaling pathways of these NRs have also 
been described but remain somewhat controversial  (especially for 
AR). These have not yet been successfully translated (therapeutically) 
to studies in humans, and will therefore not be further discussed here.

Androgen and estrogen deficiency also have important indirect 
effects via other signaling pathways in bone (e.g. insulin‑like growth 
factor I (IGF‑1)26), potentially via AR and ER in other tissues like muscle, 
fat, and the nervous system, or via, for example, decreased physical 
activity in AR knockout (ARKO) mice.27,28 Therefore, caution needs to 
be exerted regarding the roles of AR and ER specifically in bone cells 
when interpreting the results of gonadectomy or ARKO/ERKO models. 
These limitations have been overcome recently using Cre/LoxP mouse 
models (see below). The fact that these cell‑specific models show less 
dramatic bone phenotypes than their global ARKO/ERKO counterparts 
confirms the importance of pleiotropic actions of sex steroids on bone.

STRUCTURAL BASIS OF MALE BONE STRENGTH
The musculoskeletal system is sexually dimorphic, being on 
average  (but obviously not in all cases) larger and more robust in 
men compared to women. Bone strength is determined by peak bone 
mass (PBM) acquisition in young adulthood and subsequent turnover 
in different compartments  (cortical and trabecular bone), resulting 
in gender differences in bone length, bone mineral density (BMD), 
geometry, and microarchitecture. For other determinants like 
material properties, gender differences require further investigation. 
Osteoporotic fracture risk is not only determined by purely skeletal 
factors but also by risk of falls, which should also be evaluated and 
treated in osteoporotic men.29,30

In the following paragraphs, we will discuss the structural basis of 
male bone strength. It is well‑known that men have higher peak areal 
BMD (aBMD) in young adulthood and aBMD declines slower as they 
age.31 However, this should be interpreted with caution because of 
the projectional nature of dual energy X‑ray absorptiometry (DXA), 
which leads to potential confounding by bone size, geometry, and 
porosity rather than true volumetric density (vBMD). In this respect, 
quantitative computed tomography (qCT), especially high resolution 
peripheral qCT  (HR‑pqCT), has recently led to a major advance 
in our understanding of the gender dimorphism in the structural 
determinants of bone strengths.

Bone size
Men are on average taller due to the actions of sex steroids on the 
growth plate (see below). From a biomechanical point of view, longer 

bones (which are also wider and have greater bone mass) are more 
resistant to bending. However, several cohort studies have found a 
positive association between height and risk of low‑energy fractures, 
although the results in men are scant and only bordered significance.32,33 
This may be explained by greater loads when falling from a larger 
height, longer arms of moment, as well as by relatively thinner cortices 
and greater cortical porosity in larger bones; although definitive data 
in men are currently lacking.34

Peak bone mass
Bone mineral mass can be low in old age because insufficient 
PBM attainment during skeletal growth  (modeling phase) or 
due to an imbalance in the normally coupled process of bone 
turnover (remodeling phase), either by excessive bone resorption or 
decreased bone formation. The risk of many chronic diseases which 
manifest in old age, including osteoporosis, is determined at least 
in part by childhood or even prenatal experiences. PBM is largely 
(60%–80%) genetically determined, but the remainder is determined by 
environmental factors, some of which (e.g. maternal age and vitamin D 
status during pregnancy) are potentially amenable to interventions.35,36 
Theoretically, small increases in PBM translate into a large delay in 
osteoporosis onset,37 although it remains to be established whether 
bone mass increments early in life can be sustained into old age.38

The age of PBM or peak bone density differs between studies and 
depends on the measured site. In a prospective study with 15 years of 
follow‑up, BMC in boys plateaued first at the femoral neck, followed 
by the total hip, lumbar spine, and whole body, respectively at the age 
of 2, 3, 4, and 6 years after peak height velocity (PHV, average age 14 in 
men).39 Hip aBMD decreases early after it peaks.40 Longitudinal studies 
across a wider age range have however estimated that lumbar spine 
BMD may peak as late as age 33 and 40 in men and women, respectively. 
Bone area increments are followed 1–2 years later by mineralization, 
and there are little differences between men and women when the 
age of PHV is used as the reference.41 The peripubertal years  (age 
12–16) contributed 33%–46% to adult‑level BMC, demonstrating the 
importance of this window of opportunity for interventions to optimize 
PBM.39 There is considerable variation in the timing of male puberty, 
but neither early nor late normal puberty seem to compromise PBM.42

Bone geometry and microarchitecture
Men develop wider bones even after adjustment for height because of 
greater periosteal apposition in the appendicular skeleton, whereas girls 
predominantly decrease their endosteal perimeter.1 As a result, cortical 
bone in men is placed further away from the neutral axis, providing 
greater resistance to bending, but no difference in size‑independent 
biomechanical indices.43,44 Bone width predicts fractures in older men 
independently of aBMD, and men with low bone width combined 
with BMD T‑scores <−1 have similar fracture incidence as men with 
T‑scores <−2.45

Recently, most cross‑sectional studies using HR‑pqCT have 
documented cortical and trabecular bone across the lifespan in more 
detail (Figure 1).

At  PBM, men have higher  trabecular  bone volume 
fraction  (Figure  1a) due to thicker  (Figure  1c), more plate‑like 
trabeculae. On the other hand, cortical porosity is greater  (not 
shown) and cortical vBMD slightly lower (Figure 1f), while trabecular 
vBMD  (not shown) and cortical thickness  (Figure  1e) are not yet 
greatly different.43,46–48 Increasing cross‑sectional area and cortical 
thickness, ongoing cortical mineralization and decreasing porosity 
contribute to ongoing aBMD and estimated strength increases during 
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the 3rd decade of life in men, whereas in women cortical perimeter and 
strength do not increase during young adulthood.40,49

Both cortical and trabecular vBMD losses are more pronounced 
with age in women, although rates of trabecular bone loss vary across 
sites.43,50 With ageing, endocortical resorption outpaces periosteal 
apposition leading to a thinner cortex in both sexes, but older women 
show dramatically greater medullary expansion and thus cortical 
thinning (Figures 1e and 3).43,51–53 This was nicely illustrated in one 
prospective pqCT study  (Figure  2), which also demonstrated the 
limitations of capturing bone geometrical changes across the lifespan 
from cross‑sectional data.51

Cortical porosity is greater in young men, but increases faster 
in women, especially after menopause, resulting in similar porosity 
after age 50.43,44 Cortical vBMD decreases from midlife in women, but 
only after age 75 in men, whereas trabecular bone loss starts almost 
immediately after PBM in both sexes  (Figure  1a) but more so in 
women, with acceleration during perimenopause.50,53 Bone loss in men 
is more due to decreased formation rather than increased resorption, 
therefore trabeculae become thinner (Figure 1c) but less perforated, 
disconnected and thus widely spaced (Figure 1b and 1d) compared 
to postmenopausal women.46,54 Poor trabecular microarchitecture 
predisposes men to multiple and severe vertebral and peripheral 
fractures.55 At the femoral neck, men have higher aBMD despite 
lower vBMD, due to greater length and femoral neck area, showing 

the importance of geometry over mineralization in the decreased hip 
fracture risk in men.56 This also explains why men and women have 
the same strength for the same femoral neck aBMD: because of the 
offsetting effects of higher bone area and lower vBMD in men.57

In conclusion, detailed imaging techniques have greatly improved 
our understanding of the structural basis for gender differences in 
bone strength. How and to what extent sex steroids regulate this sexual 
dimorphism in cortical and trabecular bone will be discussed below.

SEX STEROID SIGNALING IS KEY TO MUSCULOSKELETAL 
SEXUAL DIMORPHISM
Are gender differences in bone phenotype due to sex steroid signaling 
or other pathways? Sex steroids and especially estrogens were once 
considered a central hub on which bone signaling pathways converged 
in both genders,58 but this unitary estrogen‑centric view has been 
modified.59,60 Both at PBM and during ageing, BMD, bone geometry, 
bone turnover, and skeletal muscle mass in men have now been 
associated with multiple hormones  (e.g.,  IGF‑1 and IGF binding 
proteins,61–64 endogenous PTH,63,65 vitamin D,66,67 and thyroid hormone 
within the normal range),68,69 immunological, and other pathways in 
bone  (e.g.,  CRP,70 RANK/RANKL/OPG), oxidative stress,71–73 and 
classical ageing pathways,60 etc. Mostly similar associations have 
however been reported in women, and a recent meta‑analysis of 
genome‑wide BMD association studies failed to identify any significant 
gene‑by‑sex interactions.74 Fundamental gender differences in key bone 
signaling pathways therefore seem unlikely.

Conversely, the musculoskeletal system of transsexual men shows a 
dramatic shift from the female to male phenotype after ovariectomy and 
prolonged T treatment.75 Similarly, XY women with complete androgen 
insensitivity syndrome due to inactivating AR mutations have reduced 
BMD and a bone geometry intermediate between male and female, and 
estrogen treatment does not induce periosteal bone apposition in these 
subjects.76 BMD is however much lower in both XY and XX women with 
gonadal dysgenesis, implying that gonadal status or sex steroids are more 
important than chromosomal determinants.77 Overall, we can conclude 
that androgens (or AR mediated androgen action) are necessary for 
musculoskeletal sexual dimorphism in development and ageing, 
although they probably have important indirect actions on bone via 

Figure  1: Structural determinants of bone strength in men based on high 
resolution peripheral computed tomography  (HR‑pqCT) at the ultradistal 
radius. Adapted, with permission, from Khosla et  al.46 Tb.Th: trabecular 
thickness; BV/TV: trabecular bone volume/tissue volume; TbN: trabecular 
number; TbSp: trabecular separation; Cort vBMD: cortical volumetric bone 
mineral density; Ct.Th: cortical thickness.
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Figure 2: Schematic model of bone geometry changes at the tibia during adult 
lifespan in men and women. When comparing young women and men, men have 
greater cortical thickness due to greater periosteal perimeter (shown in black), 
while women mainly decrease their endocortical perimeter  (also shown in 
black). With ageing, cortical thinning results from endocortical bone resorption 
in both genders (difference compared to age 20 shown in blue), but this is much 
more pronounced in women, and ongoing periosteal apposition (difference 
compared to age 20 shown in red) in both genders is unable to compensate 
for the differences. On the other hand, bone is placed further away from the 
central axis in men at all ages, and this dramatically improves biomechanics. 
Adapted, with permission, based on data from Lauretani et al.51



Sex steroids and skeletal sexual dimorphism 
M Laurent et al

216

Asian Journal of Andrology 

aromatization, oxidative stress,78 proinflammatory cytokines,79,80 growth 
factors (e.g. transforming growth factor (TGF)‑b, IGF‑1),1,26,81 etc.

SEX STEROID REGULATION OF MALE BONE METABOLISM

Sex steroids control longitudinal bone size at the growth plate
It is generally accepted that delayed estrogen‑mediated closure of 
epiphyseal growth plate cartilage contributes to greater bone length in 
men. T on the other hand probably also stimulates height velocity mainly 
via aromatization and estrogen‑mediated pituitary growth hormone 
release. Non‑aromatizable androgens increase growth rate in boys 
without altering serum GH/IGF‑1, possibly via the AR in chondrocytes 
and local IGF‑1 signaling in the growth plate.1,82 Pubertal height velocity 
acceleration and subsequent growth plate closure seem to be absent in 
men with inactivating ERa mutations83 or aromatase deficiency84–87 
who show steady, continuous growth, suggesting that estrogens have 
a dominant role in these processes. A  recent study using ERaKO 
mice with no residual truncated isoforms confirmed the continuing 
longitudinal growth seen in the ERaKO (see next paragraph).88 The 
fact that 46, XY girls with complete androgen insensitivity syndrome 
have a growth spurt similar in timing and amplitude as 46, XX girls89 
is probably due to estrogen effects, but it does not exclude a role for 
AR itself. Male ARKO mice have been anecdotally noted to have 
increased femur length,90 but in men the effects of increased estrogen 
due to aromatization probably override any possible direct effect of T 
on the growth plate. On the other hand, further research on androgen 
regulation of (growth plate) chondrocytes would be of interest.

Estrogen deficiency: the primary mediator of bone loss in older 
hypogonadal men
The primary role of estrogens in postmenopausal osteoporosis was 
proposed by Albright et al., in 1941.91 Similarly, hypogonadal men with 
low T were noted to have increased risk of osteoporosis and fractures.92,93 
The historic dichotomous view that estrogens were important for bone 
health in women and androgens in men was however challenged by 
a unique report of a man with an ERa mutation.83 He presented with 
tall stature, incomplete epiphyseal closure in adulthood and markedly 
decreased bone density. In 1998, investigators from the Mayo Clinic 
proposed a unitary model for the pathogenesis of osteoporosis with a 
central responsibility for estrogens, not only in post‑menopausal but 
also in male osteoporosis and even in the negative calcium balance and 
secondary hyperparathyroidism in age‑related osteoporosis.58 This was 
based on seminal observations,94 subsequently confirmed in multiple 
prospective cohort studies, of a strong association between (calculated 
free or bioavailable) E2, bone turnover, and bone density in 
community‑dwelling men; whereas, the same associations with T were 
variable, weak, absent, or disappeared after correcting for E2 or other 
variables.95–105 On the other hand, threshold effects (i.e., greater decreases 
in serum E2 in women compared to relatively normal androgen levels in 
ageing men) probably limit the conclusions that can be drawn from such 
cohort studies. Indeed, in several studies, E2 (and SHBG, see below) have 
been associated with bone loss below a certain threshold,96,101,106 while this 
has not been confirmed in younger cohorts of men.105,107 In the European 
Male Ageing Study (EMAS) of men aged 40–79 years, the prevalence of T 
between 11 and 8 nmol l−1 was 12.9%, while only 4.1% had T <8 nmol/l, 
showing that most hypogonadism is mild in cohort studies.108 
Nevertheless, several complimentary lines of evidence (Table 1)84–87,109–120 
confirm that estrogens are crucial to restrain bone turnover in ageing 
men. Thus, the finding that T blocks orchidectomy‑induced bone loss 
in ERaKO mice121 has been contradicted by human experiments,120 
which is possibly due to limitations of the ERaKO mouse model (which 

shows high bone mass due to increased T, which also contrasts with the 
situation in an ERaKO man).83

Low testosterone and high sex hormone-binding globulin pose 
additional risks
The overall conclusion thus appears to be that estrogens are more 
important than androgens in maintaining bone health in ageing men. 
Yet low T and high SHBG may still harbor additional detriments. Free 
or bioavailable T has been associated with BMD (at predominantly 
cortical sites), bone area, muscle area and strength, reduced fat mass 
and hip, vertebral and non‑vertebral fractures in different large studies 
in older men.107,122–124 Late‑onset hypogonadism (LOH) as defined by 
the presence of three sexual symptoms according to criteria from the 
EMAS appears to correlate more strongly than low T alone with low 
ultrasound‑estimated BMD.125 Similarly, risk for hip fractures has been 
found highest in men with both low E2 and T.126 We have previously 
shown in mice that optimal effects of T require a functional AR.127 
These data are in agreement with findings from a man with concomitant 
aromatase deficiency and low T, in whom T and E2 replacement showed 
additive effects.128

In the largest study, low E2 and high SHBG were independent 
predictors of BMD losses and fracture risk in men, but risks were 
highest when both bioavailable E2 and T were combined with high 
SHBG.129,130 SHBG has been associated independently of bioavailable 
T and E2 with improved cortical bone development in young 
men, but accelerated bone losses with ageing and consequently 
increased fracture risk.106,131–134 The mechanisms by which SHBG 
may influence bone in this apparently paradoxical manner require 
further investigation.135

The role of catabolic enzymes
Not only synthetic but also catabolic enzymes control steady state sex 
steroid serum levels. In the Swedish MrOS study, specific androgen 
metabolites correlated with male BMD, while T itself did not.102 
Polymorphisms in the enzymes catechol‑O‑methyl‑transferase (COMT, 
an estrogen degrading enzyme) and uridine diphosphate 
glucuronosyltransferase 2B7  (which inactivates mainly androgens 

Table  1: Evidence supporting the primary role of estrogens in bone 
loss in older men

Animal models

E2 is a more effective bone‑sparing agent than DHT in aged male rats109

Human genetic evidence

Polymorphisms in ER (but not AR) signaling negatively influence male bone110–112

Longer CAG repeats diminish AR function but may be compensated by 
increased T levels, paradoxically stimulating bone via aromatization113

Men with aromatase deficiency have high T, but suboptimal bone mass which 
improves with estrogen (but not androgen) therapy84–87

Human observational studies

Several large cohort studies confirm relationship between E2 and male bone 
metabolism, while the same relationship with T is weak, absent, or disappears 
after correcting for E2 (but not vice versa)

Increased bone turnover and fracture risk in older men receiving androgen 
deprivation therapy for prostate cancer may be due to a loss of substrate for 
aromatization, since AR antagonists alone are not detrimental for bone115–117

Human experiments

Aromatase inhibition in older men increases T, but decreases E2 and BMD118

Gonadotropin inhibition and T or E2 add‑back shows that E2 has the 
dominant antiresorptive effect119

T replacement with or without aromatase inhibition demonstrates that T alone 
cannot overcome male bone resorption in the absence of E2120

BMD: Bone Mineral Density; CAG: Cytosine adenine guanine; DHT: Dihydrotestosterone
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but also some estrogens) have been associated with increased sex 
steroid levels and bone geometry in young men.136–139 In another large 
population‑based study, the COMT polymorphism was independently 
associated with fracture risk but not BMD, and only in men.140 The 
activity of these and other steroid metabolizing enzymes, and whether 
they exert their influence mainly systemically or locally in bone, merits 
further study.

The contribution of 5α‑reductase type 1
Only a small percentage of DHT enters the circulation, and this 
fraction does not correlate with male BMD.102 5a‑reductase (encoded 
by Srd5a) type 2 is primarily expressed in male reproductive tissues 
including the prostate; whereas, type  1 and 3 are expressed in 
many tissues including reproductive tissues and bone.141 The 
5a‑reductase inhibitor finasteride inhibits type 2 and 3; whereas, 
dutasteride inhibits all three. It is therefore not unexpected 
that finasteride does not affect bone density, turnover, fracture 
risk, or muscle anabolic effects of androgens.142–148 In contrast, 
male Srd5a1‑/‑  mice have recently been characterized as having 
reduced bone mass and muscle strength despite normal androgen 
serum levels.149 Human RCTs however have not shown effects 
of dutasteride on bone metabolism,145,150 nor does dutasteride 
influence the anabolic effects of T on muscle.151 Whether or not 
5a‑reductase type 1 activity contributes to male bone mass, thus 
merits further investigation.

Meanwhile, aromatizable androgens may be used preferentially 
to simultaneously compensate androgen and estrogen deficiency 
in men with LOH. In a small randomized controlled trial (RCT), 
DHT gel treatment in older men with low T suppressed endogenous 
T without affecting E2 or BTMs,152 while another RCT showed 
decreased E2 as well as spinal BMD.153 Therefore, the main effect 
of androgens or selective AR modulators  (SARMs) may depend 
on their suppression of estrogens. We have previously shown in 
rodents that androgens and estrogens apparently act via different 
pathways and that their combination might be beneficial compared 
to each strategy alone,154,155 although this requires confirmation in 
men with LOH.

RELATIVE CONTRIBUTIONS OF ANDROGEN RECEPTOR, 
ESTROGEN RECEPTORα, AND ESTROGEN RECEPTORβ IN 
CORTICAL VS TRABECULAR BONE
Although observational studies in humans are important to deermine 
the influence of sex steroids on male bone, the study of the respective 
contributions of AR and ER require knockout animal models as well 
as confirmation in rare human genetic disorders. These studies have 
revealed unexpected complexity regarding the roles of these NRs in 
different bone compartments.26

Both AR and ERa are required for optimal periosteal bone 
expansion,90,156 although estrogens limit periosteal expansion in 
early puberty, probably because of time‑specific and independent 
effects on IGF‑1.26,81 For trabecular bone development on the 
other hand, AR is solely responsible.90,156 Indeed, ARKO decreases 
cancellous bone, while systemic ERaKO increases it  (probably 
due to increased androgen levels in this animal model)121,157 
and combined AR/ERaKO does not decrease trabecular bone 
more than ARKO alone.90 Compared to wild‑type females, male 
pubertal ARKO mice have equal length, decreased trabecular 
bone, and identical cortical bone parameters; showing that 
androgens are required for optimal bone development, especially 
trabecular but also cortical, but not for longitudinal growth.158 

These results are confirmed in humans: estrogen therapy in young 
aromatase‑deficient men indeed improves cortical thickness and 
area; however, without increasing trabecular vBMD.86 Nevertheless, 
more recent animal studies using cell‑specific ERaKO models 
do also suggest a role for ERa in trabecular bone formation (see 
below). ERb plays a role in female bone health,157,159,160 but male 
ERbKO mice have normal bones and ERαbKO show no difference 
to ERaKO alone.154

ACTION MECHANISMS OF AR AND ERα IN SPECIFIC BONE 
CELLS

Androgens control osteoblasts and osteocytes, while estrogens also 
regulate osteoclasts
Cell culture experiments from ARKO mice have suggested that 
AR controls mainly osteoblasts and their indirect control of 
osteoclastogenesis.161 However, as mentioned above, global ARKO/
ERKO models or gonadectomy/antagonist studies preclude definitive 
conclusions about the cellular targets of AR and ER in male bone. 
Indirect evidence suggested that AR and ER signaling targets mainly 
osteoblasts and osteoclasts, respectively. These assumptions have only 
recently been verified using Cre/LoxP mouse models, although this 
requires careful verification that neither the Cre driver nor the floxed 
genotypes have effects themselves (see Rana et al. in this theme issue).

Androgen receptor in the osteoblast lineage
Osteocalcin‑Cre driven ARKO revealed that androgens stimulate 
mineralizing osteoblasts, thus indirectly inhibiting cortical and 
trabecular bone resorption, especially during times of bone accrual.162 
Col2.3‑Cre driven ARKO showed that mature osteoblasts contribute 
to trabecular bone maintenance.163 However, periosteal apposition was 
not influenced by AR deficiency in these mature cells, probably because 
the periosteum contains more pre‑  and proliferating osteoblasts. 
Indeed, AR overexpression in immature osteoblasts increases periosteal 
and decreases endosteal bone formation; whereas, osteogenesis was 
inhibited at both envelopes following AR overexpression in mature 
osteoblasts.164,165 Recently, we have shown in Dmp1‑Cre mice that 
loss of AR in osteocytes results in similar, moderate impairment of 
trabecular bone maintenance.166 Importantly, AR expression increased 
with the maturation of osteoblasts towards osteocytes.166 These different 
phenotypes suggest that AR has a direct role across the entire osteoblast 
lineage.

Androgen receptor and estrogen receptor alpha in osteoclasts
Clearly, AR signaling has important indirect restraining effects on 
osteoclasts, for example by controlling cytokine production in bone 
marrow stromal cells.79 AR has been detected in  vitro and with 
immunohistochemistry in rodent osteoclasts albeit at very low levels, and 
it may be absent in human osteoclasts.1,167,168 Several though not all studies 
have suggested that androgens also directly suppress in vitro osteoclast 
formation from hematopoietic precursors.1,168–171 Although they could 
not confirm the presence of AR in osteoclasts, the group of Kato found 
to their surprise that cathepsin K‑Cre‑driven ARKO also induces bone 
resorption (although this data has only been published in abstract),172 
in a similar way as they and others have reported for osteoclast‑specific 
ERaKO in female (but not male) mice.173,174 Thus, a direct in vivo role 
for AR in osteoclasts merits independent confirmation.

Estrogen receptor alpha in osteoblasts
ERa has recently been established to have a role in osteoblasts 
and osteocytes too. It was already known that osteoblast‑specific 
overexpression of aromatase increases bone mass in male mice.175 Prx1 
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Cre and Osterix‑Cre mice have now been used to selectively excise 
ERa from pluripotent mesenchymal progenitors in the limb bud of the 
appendicular skeleton, and respectively, osteoblast progenitors. These 
mice showed mainly cortical bone deficits resulting from decreased 
periosteal bone formation, although cortical bone deficits were 
overcome during adulthood in Prx1‑Cre ERαKO males.176 Deletion 
of ERa using the Col1a1 deleter did not affect cortical or trabecular 
bone. However, this should not be taken as evidence that ERa has no 
role downstream in osteoblast differentiation. Indeed, osteocalcin‑Cre 
ERaKO decreased trabecular bone in males, and both trabecular and 
cortical bone in females.177 Dmp1‑Cre ERaKO males also showed 
decreased bone formation and less trabecular bone, but there was no 
effect on cortical bone, or any effect in females. The authors concluded 
that the trabecular bone‑sparing effects of estrogens are mediated by 
osteocyte ERa in males, but probably by osteoclast ERa in females.178 
Interestingly, both ERaKO179 and ARKO180 have been known to 
influence the response to mechanical loading, but the response to 
mechanical loading was unaltered in the respective osteocyte‑specific 
knockout mice.166,178

In summary, these studies in male mice suggest that both AR and 
ERa are required for optimal cortical bone expansion via actions in 
immature osteoblasts, and trabecular bone maintenance via actions in 
more differentiated osteoblasts and osteocytes (Figure 3).

Indirect effects of androgen receptor and estrogen receptors on bone 
via muscle, fat, and the nervous system
The interaction of bone with muscle, adipose, and neural systems is 
increasingly studied. Tissue‑specific ARKO models are discussed in more 
detail in the accompanying review by Rana et al. in this theme issue.

Bone‑muscle interaction
Male ARKO mice have impaired muscle development,181 and 
additional ERaKO further reduces muscle mass.90 However, 
muscle‑specific ARKO mice did not show altered bone metabolism 
and only slightly reduced peripheral skeletal muscle mass, possibly 
because only perineal muscles display high AR content and androgen 
regulation in mice.182,183 This contrasts with the well‑known anabolic 
effects of androgens on human muscle.184 Thus, although the effects 
of androgens on bone in mice are unlikely to be mediated via the AR 
in muscle, it remains unclear whether sarcopenia in older men with 
LOH contributes directly or is merely associated with bone loss and 
fractures.2,185,186

Bone‑fat interaction
Clinical evidence suggests a positive association between bone and 
fat, but mainly in females, possibly because adipocyte aromatase 
activity influences circulating E2 or because of increased gravitational 
loading.2,185 Fat mass is principally regulated by estrogens since double 
knockouts have similar adiposity compared to ERaKO alone,90 
although androgens also have clear lipolytic activity, and male ARKO 
mice have increased adiposity.28 A link between glucose, insulin, and 
bone metabolism has also been suggested in mice, and male bone 
metabolism is altered in diabetes and the metabolic syndrome. Thus, 
whether AR or ER signaling in adipocytes modulates sex steroid effects 
on bone would be of interest.

Central nervous system control of bone mass
Central nervous system regulation of bone mass has been demonstrated 
recently with often opposite effects to peripheral signaling. This also 
seems to be the case for estrogens, since neuron‑specific ERaKO 
using nestin‑Cre increases bone formation via leptin.187 Conditional 
inactivation of AR in the nervous system of mice however disrupts 
the somatotropic axis as evidenced by growth retardation and 
twofold lower serum IGF‑1, without relative differences in total bone 
mass or body composition.188 This reiterates that the skeletal sexual 
dimorphism resulting from sex steroids is dependent on indirect 
effects via growth hormone, IGF‑1 and IGF binding proteins in brain, 
bone, and liver. 26,81,189

CONCLUSIONS
The musculoskeletal system is more robust in men, and sex steroid 
signaling remains essential for this sexual dimorphism. The advent 
of high resolution imaging has allowed better insights into the 
microarchitectural determinants of male bone strength. Specifically, 
androgens may promote trabecular bone development and thickness 
in young adulthood, as well as cortical consolidation in midlife 
and maintenance of cortical thickness and trabecular bone volume 
in older men by stimulating periosteal apposition and trabecular 
bone formation. Thus, although estrogen deficiency is the primary 
mediator of hypogonadal bone loss in men, high SHBG and low T 
probably pose additional detriments. The role of sex steroid catabolic 
enzymes and local lipid metabolism within bone (e.g. by 5a‑reductase 
type 1) requires further investigation. Recent studies using knockout 
mouse models have refined our understanding of the contributions 
of AR and ERa in osteoclasts, osteoblasts, and osteocytes to cortical 

Figure 3: Schematic illustration of the cellular targets of androgen receptor (AR) and estrogen receptor (ER) a on periosteal, endocortical, and trabecular 
surfaces in male mice. Based on a mCT image of the proximal murine tibia
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and trabecular bone development and maintenance. At the same 
time, they have reinforced the notion that sex steroids must have 
important pleiotropic effects on bone, for example, via interaction 
with the nervous system, IGF‑1 and altered response to mechanical 
loading. A better understanding of the microarchitectural, cellular and 
molecular mechanisms of actions of androgens and estrogens continues 
to be necessary to develop therapeutic strategies which can exploit their 
benefits for bone health without unwanted side effects in other tissues.
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